
Getting Started with
Ingesting GitHub GHAS Alerts

GitHub

GitHub Partner Engineering

How to use this guide
This deck is meant as a starting point for ingesting GitHub
Advanced Security (GHAS) Alerts. These alerts can be fed
into 3rd party solutions
● Logging
● Observability
● Security Information and Event Management (SIEM)
● Business Intelligence (BI)

It contains links to documentation and sample code. The
code samples leverage octokit.js.

https://github.com/octokit/octokit.js

Topics

👋 GitHub Advanced Security platform overview

 Polling with GitHub REST API

 Webhooks

🚀 Summary

👋 GitHub platform overview

3 Types of GitHub GHAS Alerts

● Code Scanning Alerts
● Secret Scanning Alerts
● Dependabot Alerts

https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning-alerts
https://docs.github.com/en/enterprise-cloud@latest/code-security/secret-scanning/managing-alerts-from-secret-scanning
https://docs.github.com/en/enterprise-cloud@latest/code-security/dependabot/dependabot-alerts/about-dependabot-alerts

How to try GitHub Advanced Security

https://resources.github.com/security/tools/ghas-trial/

Polling

Pros
● Returns rich data set
● Has historical alerts

Cons
● Subject to rate limits
● Requires a dedicated host
● May require data sanitation (secret

scanning alerts contain secrets)

Webhooks

Pros
● Push based
● Real time, event-driven

Cons
● Requires HTTP write endpoint
● No retry mechanism
● Returns only summaries
● No history, only new events

Ingestion Strategy Comparison

 Polling with GitHub API’s

Code Scanning REST API docs example

// Octokit.js
// https://github.com/octokit/core.js#readme
const octokit = new Octokit({
 auth: 'personal-access-token123'
})

await octokit.request('GET
/orgs/{org}/code-scanning/alerts', {
 org: 'ORG'
})

[
 {
 "number": 4,
 "created_at": "2020-02-13T12:29:18Z",
 "url":
"https://api.github.com/repos/octocat/hello-world/code-sc
anning/alerts/4",
 "html_url":
"https://github.com/octocat/hello-world/code-scanning/4",
 "state": "open",
 "dismissed_by": null,
 "dismissed_at": null,
 "dismissed_reason": null,
 "rule": {
 "id": "js/zipslip",
 "severity": "error",
 "tags": [
 "security",
 "external/cwe/cwe-022"
],
 "description": "Arbitrary file write during zip
extraction",
 "name": "js/zipslip"
 },
…

Example 200 ResponseCode Snippet

https://docs.github.com/en/rest/code-scanning#list-code-scanning-alerts-for-a-repository
https://github.com/jhutchings1/get-code-scanning-alerts-in-org-sample

Secret Scanning REST API docs example

// Octokit.js
// https://github.com/octokit/core.js#readme
const octokit = new Octokit({
 auth: 'personal-access-token123'
})

await octokit.request('GET
/repos/{owner}/{repo}/secret-scanning/alerts', {
 owner: 'OWNER',
 repo: 'REPO'
})

[
 {
 "number": 2,
 "created_at": "2020-11-06T18:48:51Z",
 "url":
"https://api.github.com/repos/owner/private-repo/secret-s
canning/alerts/2",
 "html_url":
"https://github.com/owner/private-repo/security/secret-sc
anning/2",
 "locations_url":
"https://api.github.com/repos/owner/private-repo/secret-s
canning/alerts/2/locations",
 "state": "resolved",
 "resolution": "false_positive",
 "resolved_at": "2020-11-07T02:47:13Z",
 "resolved_by": {
 "login": "monalisa",
 "id": 2,
 "node_id": "MDQ6VXNlcjI=",
 "avatar_url":
"https://alambic.github.com/avatars/u/2?",
 "gravatar_id": "",
 "url": "https://api.github.com/users/monalisa",
…

Example 200 ResponseCode Snippet

https://docs.github.com/en/enterprise-cloud@latest/rest/secret-scanning#list-secret-scanning-alerts-for-a-repository
https://github.com/mr-sherman/get-secret-scanning-alerts-in-org

Dependabot GraphQL API docs example

const { lastIssues } = await octokit.graphql(
`query fetchRepoAlerts ($org: String!, $repo:String!) {
 repository(owner: $org, name: $repo) {
 vulnerabilityAlerts(first: 100) {
 nodes {
 createdAt
 dismissReason
 dismissedAt
 dismisser {
 login
 }
 securityAdvisory {
 description
 ghsaId
 cvss {
 score
 }
 severity
 summary
 }
 vulnerableManifestPath
 vulnerableManifestFilename
 }
 pageInfo {
 hasNextPage
 endCursor
 }
 }
 },
 {
 org: "octokit",
 repo: "graphql.js",
 }
);

Sample Query

{
 "data": {
 "repository": {
 "vulnerabilityAlerts": {
 "nodes": [
 {
 "createdAt": "2022-04-06T14:55:49Z",
 "dismissReason": null,
 "dismissedAt": null,
 "dismisser": null,
 "securityAdvisory": {
 "description": "This affects the package
node-notifier before 8.0.1. It allows an attacker to run
arbitrary commands on Linux machines due to the options
params not being sanitised when being passed an array.",
 "ghsaId": "GHSA-5fw9-fq32-wv5p",
 "cvss": {
 "score": 5.6
 },
 "severity": "MODERATE",
 "summary": "OS Command Injection in
node-notifier"
 },
 "vulnerableManifestPath": "package-lock.json",
…

Example 200 Response

https://docs.github.com/en/graphql/reference/objects#repositoryvulnerabilityalert
https://github.com/shundor/get_dependabot_alerts

 Webhook Events & Payloads

code_scanning_alert docs

https://docs.github.com/en/developers/webhooks-and-events/webhooks/webhook-events-and-payloads#code_scanning_alert

repository_vulnerability_alert docs

https://docs.github.com/en/developers/webhooks-and-events/webhooks/webhook-events-and-payloads#repository_vulnerability_alert

secret_scanning_alert docs

https://docs.github.com/en/enterprise-cloud@latest/developers/webhooks-and-events/webhooks/webhook-events-and-payloads#secret_scanning_alert

Testing Webhooks
GitHub keeps a log of each webhook delivery for 30 days.

https://docs.github.com/en/developers/webhooks-and-events/webhooks/testing-webhooks

Best Practices

● Use Webhooks in conjunction with the
REST API’s to get the full picture

● Create a GitHub App for higher rate
limits.

https://docs.github.com/en/developers/apps/building-github-apps/rate-limits-for-github-apps
https://docs.github.com/en/developers/apps/building-github-apps/rate-limits-for-github-apps

 Appendix: Authentication

Authentication overview
Authentication

Scheme
Also Known As Description How to Get It Available

Endpoints
Examples

JSON Web Token JWT (pronounced
“jot”)

Authenticates as the
GitHub App

GitHub docs, Octokit List Fetching application
installation details or
exchanging the JWT
for an installation
access token.

Installation access
token

Server-to-server
requests

Authenticates as a
specific installation
of the GitHub App

GitHub docs,
Octokit

List Opening an issue or
providing feedback on
a pull request

OAuth access
token

User-to-server
requests

Authenticates as a
user of the GitHub
App

GitHub docs List Authenticating as a
user when a GitHub
App needs to verify a
user’s identity or act
on a user’s behalf

Personal Access
Token

PAT Authenticates as a
user

GitHub docs PATs are an
alternative to using
passwords for
authentication to
GitHub

https://docs.github.com/apps/building-github-apps/authenticating-with-github-apps/#authenticating-as-a-github-app
https://docs.github.com/apps/building-github-apps/authenticating-with-github-apps/#authenticating-as-a-github-app
https://docs.github.com/apps/building-github-apps/authenticating-with-github-apps/#authenticating-as-a-github-app
https://github.com/octokit/app.js
https://docs.github.com/en/rest/reference/apps
https://docs.github.com/apps/building-github-apps/authenticating-with-github-apps/#authenticating-as-an-installation
https://docs.github.com/apps/building-github-apps/authenticating-with-github-apps/#authenticating-as-an-installation
https://docs.github.com/apps/building-github-apps/authenticating-with-github-apps/#authenticating-as-an-installation
https://github.com/octokit/app.js
https://docs.github.com/en/rest/reference/apps#available-endpoints
https://docs.github.com/apps/building-github-apps/identifying-and-authorizing-users-for-github-apps/#identifying-users-on-your-site
https://docs.github.com/apps/building-github-apps/identifying-and-authorizing-users-for-github-apps/#identifying-users-on-your-site
https://docs.github.com/apps/building-github-apps/identifying-and-authorizing-users-for-github-apps/
https://docs.github.com/en/developers/apps/identifying-and-authorizing-users-for-github-apps#user-to-server-requests
https://docs.github.com/en/rest/guides/getting-started-with-the-rest-api#using-personal-access-tokens
https://docs.github.com/en/rest/guides/getting-started-with-the-rest-api#using-personal-access-tokens
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

Authentication
at a glance

Deciding which
authentication type to use
comes down to:
● What resource do I

need to access?
● Who do I need to

access it as?

Server-to-server requests

Server-to-server requests are those made from the perspective of an installation and are
authenticated by installation access tokens.

Using your JWT, generate an installation access token via:

As a security measure, these tokens expire after 1 hour. They can be used like:

curl -i -X POST \
-H "Authorization: Bearer YOUR_JWT" \
-H "Accept: application/vnd.github.machine-man-preview+json" \
https://api.github.com/app/installations/:installation_id/access_tokens

curl -i \
-H "Authorization: token YOUR_INSTALLATION_ACCESS_TOKEN" \
-H "Accept: application/vnd.github.machine-man-preview+json" \
https://api.github.com/installation/repositories

https://docs.github.com/en/developers/apps/authenticating-with-github-apps#authenticating-as-an-installation
https://docs.github.com/en/rest/reference/apps#create-a-new-installation-token

User-to-server requests

User-to-server requests act as a user who has authorized your GitHub
App and are authenticated using an OAuth access token.

First, users authorize your GitHub App via OAuth and receive a code:

Then, your GitHub App trades the code, client_id and client_secret
for an OAuth access token to be used like:

Unlike typical OAuth, the scope is determined by the GitHub App.

curl -H "Authorization: token OAUTH-TOKEN" https://api.github.com/user

https://docs.github.com/en/developers/apps/identifying-and-authorizing-users-for-github-apps

Additional Resources
● Developer Documentation
● GitHub REST and GraphQL APIs
● GitHub Webhooks
● Octokit and 3rd party libraries
● smee.io Tool for testing Webhooks
● Platform Samples repo
● GitHub Advanced Security Workshop
● Webhook handler samples

○ github-webhook-handler node.js
○ python-github-webhooks python
○ github_webhook ruby
○ hookserve go
○ afterparty rust
○ Github-webhook-lambda (AWS lambda)
○ GitHub-Webhook-Function (Azure Function)
○ github-webhook-cloud-function (Google Cloud Functions)

https://docs.github.com/en/developers
https://docs.github.com/v3/
https://docs.github.com/en/graphql
https://docs.github.com/en/developers/webhooks-and-events/about-webhooks
https://developer.github.com/v3/libraries/
https://docs.github.com/en/rest/overview/libraries#third-party-libraries
https://smee.io/
https://github.com/github/platform-samples
https://github.com/advanced-security/ghas-workshop
https://github.com/rvagg/github-webhook-handler
https://github.com/carlos-jenkins/python-github-webhooks
https://github.com/ssaunier/github_webhook
https://github.com/phayes/hookserve
http://softprops
https://www.serverless.com/blog/serverless-github-webhook-slack/
https://github.com/martinkearn/GitHub-Webhook-Function
https://github.com/eddies/github-webhook-cloud-function

🚀 Summary

● Polling the API is great for getting rich data sets
● Webhooks are great for getting alerts as soon as they happen

