
Platform Integration 101
GitHub

GitHub Partner Engineering

Agenda

👋 GitHub platform overview

 GitHub Apps

 GitHub Actions

🚀 Summary

👋 GitHub platform overview

GitHub platform

● 60+ million developer reach
● Thousands of integrations in GitHub

Marketplace
● Robust REST and GraphQL APIs
● Reliable webhook delivery
● App authentication model
● Built-in workflow automation tool

called GitHub Actions
● Rich ecosystem of integrators and

tooling
● Programs like secret scanning

Common touchpoints

● CI/CD flow (linting, parsing, scanning, commenting)
○ Checks API
○ Pull Requests API
○ Deployments API
○ Releases API
○ Git Data API

● Issue flow (conversation, utility, commenting)
○ Issues API
○ Reactions API

● Project Management flow
○ Repos API
○ Projects API
○ Organizations API
○ Teams API

● Security flow
○ Secret scanning and code scanning

https://docs.github.com/en/rest/reference/checks
https://docs.github.com/en/rest/reference/pulls
https://docs.github.com/en/rest/reference/repos#deployments
https://docs.github.com/en/rest/reference/repos#releases
https://docs.github.com/en/rest/reference/git
https://docs.github.com/en/rest/reference/issues
https://docs.github.com/en/rest/reference/reactions
https://docs.github.com/v3/repos/
https://docs.github.com/v3/projects/
https://docs.github.com/v3/orgs/
https://docs.github.com/v3/teams/
https://docs.github.com/en/github/administering-a-repository/about-secret-scanning
https://docs.github.com/en/github/finding-security-vulnerabilities-and-errors-in-your-code/about-code-scanning

 GitHub Apps

Introducing GitHub Apps

GitHub Apps are a tool to build comprehensive integrations with GitHub:
● First class actors on GitHub -- operating independently of any user identity
● Offer fine-grained permissions
● Installed on a user’s or organization’s repos
● Replace and offer many advantages over OAuth apps
● Come with built-in webhooks
● Work on GitHub.com and GitHub Enterprise Server
● Compatible with web technologies and standards, such as HTTP-based APIs and OAuth-like

flows
● Rich open source tooling and libraries available, eg. octokit

https://docs.github.com/apps/
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/differences-between-github-apps-and-oauth-apps
https://docs.github.com/en/apps/creating-github-apps/registering-a-github-app/using-webhooks-with-github-apps
https://developer.github.com/v3/libraries/

Advantages for customer

● Confidence in granting third parties
access to their assets in GitHub due to
fine-grained and repo-centric
permissions model

● Convenience through user-friendly
(un)installation flow

Advantages for integrator

● Can decouple integration from GitHub
user identities due to first class actor
model of GitHub Apps.

● Can take advantage of dedicated,
scalable rate limits, as opposed to the
shared rate limit model offered by OAuth
apps.

● Can utilize modern GitHub APIs like
Checks and Content Attachments

https://docs.github.com/en/developers/apps/rate-limits-for-github-apps
https://docs.github.com/v3/checks/
https://docs.github.com/apps/using-content-attachments/

Creating your first
GitHub App

Option 1: Manual creation
1) Navigate to GitHub Apps from your

GitHub Developer Settings
2) Register a New GitHub App, setting up

URLs, permissions, and events
3) Download the private key and App ID

and start coding!
For more, see here.

Option 2: Using Probot
Demo

https://github.com/settings/apps
https://docs.github.com/apps/building-github-apps/
https://probot-hello-world.glitch.me/probot

Authentication overview
Authentication

Scheme
Also Known As Description How to Get It Available

Endpoints
Examples

JSON Web Token JWT (pronounced
“jot”)

Authenticates as the
GitHub App

GitHub docs,
Octokit

List Fetching application
installation details or
exchanging the JWT
for an installation
access token.

Installation
access token

Server-to-server
requests

Authenticates as a
specific installation
of the GitHub App

GitHub docs,
Octokit

List Opening an issue or
providing feedback
on a pull request

OAuth access
token

User-to-server
requests

Authenticates as a
user of the GitHub
App

GitHub docs List Authenticating as a
user when a GitHub
App needs to verify
a user’s identity or
act on a user’s
behalf

https://docs.github.com/en/apps/creating-github-apps/authenticating-with-a-github-app/authenticating-as-a-github-app
https://docs.github.com/en/apps/creating-github-apps/authenticating-with-a-github-app/authenticating-as-a-github-app
https://docs.github.com/en/apps/creating-github-apps/authenticating-with-a-github-app/generating-a-json-web-token-jwt-for-a-github-app
https://github.com/octokit/app.js
https://docs.github.com/en/rest/reference/apps
https://docs.github.com/en/apps/creating-github-apps/authenticating-with-a-github-app/authenticating-as-a-github-app-installation
https://docs.github.com/en/apps/creating-github-apps/authenticating-with-a-github-app/authenticating-as-a-github-app-installation
https://docs.github.com/en/apps/creating-github-apps/authenticating-with-a-github-app/generating-an-installation-access-token-for-a-github-app
https://github.com/octokit/app.js
https://docs.github.com/en/rest/reference/apps#available-endpoints
https://docs.github.com/en/apps/creating-github-apps/authenticating-with-a-github-app/authenticating-with-a-github-app-on-behalf-of-a-user
https://docs.github.com/en/apps/creating-github-apps/authenticating-with-a-github-app/authenticating-with-a-github-app-on-behalf-of-a-user
https://docs.github.com/en/apps/creating-github-apps/authenticating-with-a-github-app/generating-a-user-access-token-for-a-github-app
https://docs.github.com/en/developers/apps/identifying-and-authorizing-users-for-github-apps#user-to-server-requests

Authentication
at a glance

Deciding which
authentication type to use
comes down to:
● What resource do I

need to access?
● Who do I need to

access it as?

Server-to-server requests

Server-to-server requests are those made from the perspective of an installation and are
authenticated by installation access tokens.

Using your JWT, generate an installation access token via:

As a security measure, these tokens expire after 1 hour. They can be used like:

curl -i -X POST \
-H "Authorization: Bearer YOUR_JWT" \
-H "Accept: application/vnd.github.machine-man-preview+json" \
https://api.github.com/app/installations/:installation_id/access_tokens

curl -i \
-H "Authorization: token YOUR_INSTALLATION_ACCESS_TOKEN" \
-H "Accept: application/vnd.github.machine-man-preview+json" \
https://api.github.com/installation/repositories

https://docs.github.com/en/apps/creating-github-apps/authenticating-with-a-github-app/authenticating-as-a-github-app-installation
https://docs.github.com/en/apps/creating-github-apps/authenticating-with-a-github-app/generating-an-installation-access-token-for-a-github-app

User-to-server requests

User-to-server requests act as a user who has authorized your GitHub
App and are authenticated using an OAuth access token.

First, users authorize your GitHub App via OAuth and receive a code:

Then, your GitHub App trades the code, client_id and client_secret
for an OAuth access token to be used like:

Unlike typical OAuth, the scope is determined by the GitHub App.

curl -H "Authorization: token OAUTH-TOKEN" https://api.github.com/user

https://docs.github.com/en/apps/creating-github-apps/authenticating-with-a-github-app/generating-a-user-access-token-for-a-github-app

Optimal flow (Demo)
1. Optional -- User purchases app on GitHub
Marketplace
2. User installs app on repositories and
authorizes the app
3. GitHub redirects to app's registered
callback URL
4. App exchanges OAuth code for access
token

Onboarding new
users

https://github-app-demo.glitch.me/
https://github.com/marketplace
https://github.com/marketplace

Notable APIs for GitHub Apps

● GitHub App information
○ Get the authenticated GitHub App (JWT)

● Identify installation information
○ List installations (JWT)
○ Get an organization installation (JWT)
○ Get a user installation (JWT)

● Token creation / revocation
○ Create a new installation token (JWT)
○ Revoke an installation token (installation access token)

● Identify installation resources
○ List repositories (installation access token)

● Identify user-accessible resources
○ List installations for a user (user-to-server OAuth access token)
○ List repositories accessible to the user for an installation (user-to-server OAuth access token)

https://docs.github.com/en/rest/reference/apps#get-the-authenticated-github-app
https://docs.github.com/en/rest/reference/apps#list-installations
https://docs.github.com/en/rest/reference/apps#get-an-organization-installation
https://docs.github.com/en/rest/reference/apps#get-a-user-installation
https://docs.github.com/en/rest/reference/apps#create-a-new-installation-token
https://docs.github.com/en/rest/reference/apps#installations
https://docs.github.com/en/rest/reference/apps#installations
https://docs.github.com/en/rest/reference/apps#installations
https://docs.github.com/en/rest/reference/apps#installations

GitHub Apps best practices

✅ Do:
● Cache and re-use installation tokens
● Use webhooks for real-time data
● Throttle requests to stay within rate limits
● Consider if REST or GraphQL APIs (or both)

are best for your use case
● Use conditional requests wherever possible
● Subscribe to this RSS feed for Platform

updates
● Include a descriptive User-Agent header
● Save the X-GitHub-Request-Id response

header value, especially for error responses
● Follow other best practices listed here

❌ Don’t:
● Depend on concurrent requests, this can

trigger secondary rate limits
● Poll, use webhooks where possible

https://docs.github.com/en/apps/creating-github-apps/registering-a-github-app/using-webhooks-with-github-apps
https://docs.github.com/en/rest#conditional-requests
https://developer.github.com/changes.atom
https://docs.github.com/v3/#user-agent-required
https://docs.github.com/v3/guides/best-practices-for-integrators/
https://docs.github.com/v3/guides/best-practices-for-integrators/#dealing-with-abuse-rate-limits

 GitHub Actions

GitHub Actions makes it easy to automate all your software
workflows, now with world-class CI/CD.
● Built in CI/CD
● Linux, Mac, Windows, and containers
● Matrix builds
● Easy to write, easy to share
● Streaming, searchable, linkable logs
● Built-in secret store
● Artifact caching
● Self hosted runners
● Event-driven or schedule-driven
● GitHub Enterprise Server support soon

Introducing GitHub Actions

https://github.com/features/actions
https://help.github.com/en/actions/automating-your-workflow-with-github-actions/about-continuous-integration

Getting started

1. Head to the Actions tab on any
of your repositories.

2. Set up a workflow using one or
more actions, triggered upon
event or on schedule. ✨

https://docs.github.com/en/actions/getting-started-with-github-actions/about-github-actions#workflow
https://docs.github.com/en/actions/getting-started-with-github-actions/about-github-actions#action
https://docs.github.com/en/actions/reference/events-that-trigger-workflows

Workflow

A configurable automated process that
you can set up in your repository.

For example:
● Organizational: Welcoming new

contributors
● Legal: Ensuring license uniformity
● Application: Testing across multiple

operating systems

Event

Workflows are triggered on events.

For example:
● push, pull_request, public, etc.
● schedule
● workflow_dispatch (manual trigger)
● repository_dispatch (outside systems)

Action

Individual unit of work that you
combine as steps to create a job in a
workflow.

For example:
● actions/checkout
● actions/cache
● actions/javascript-action
● Lots more on GitHub Marketplace

https://github.com/actions/checkout
https://github.com/actions/cache
https://github.com/actions/javascript-action
https://github.com/marketplace?type=actions

Actions API

Actions is backed by a RESTful API,
allowing programmatic access to
workflows, artifacts, secrets, and even
self-hosted runners.

For example:
● List artifacts for a repository
● Re-run a workflow
● Create or update a secret
● List self-hosted runners for a repository
● More information in this blog
● Example implementation in Marketplace
● Full capabilities described in the docs

https://docs.github.com/en/rest/reference/actions
https://docs.github.com/v3/actions/artifacts/#list-artifacts-for-a-repository
https://docs.github.com/en/rest/reference/actions#workflow-runs
https://docs.github.com/en/rest/reference/actions#secrets
https://docs.github.com/en/rest/reference/actions#self-hosted-runners
https://github.blog/2020-02-06-manage-secrets-and-more-with-the-github-actions-api/
https://github.com/marketplace/actions/cancel-this-build
https://docs.github.com/en/rest/reference/actions

Community

GitHub Actions is powered by an open
ecosystem and community
contributions.

For example:
● Workflows: actions/starter-workflows
● Actions: github.com/actions
● Tooling: actions/toolkit

https://github.com/actions/starter-workflows/
https://github.com/actions
https://github.com/actions/toolkit

GitHub Actions best practices

✅ Do:
● Prefer JavaScript to container
● Prefer chainable to monolithic
● Documentation, examples, blog posts,

releases, LICENSE
● GitHub Marketplace for discoverability
● Use open source tooling (eg.

@vercel/ncc, actions/toolkit)
● Use inputs and outputs

❌ Don’t:
● Produce undocumented side effects
● Waste users’ runner minutes (they’ll

notice)

GitHub Apps vs. GitHub Actions

 Apps

● Your integration requires user interaction
● Your integration needs to handle state
● Your integration acts across multiple

repos, or at the organization level
● Your integration is available to the public

but no part of the code is public
● You are comfortable hosting the app

yourself
● You need permissions that are outside the

set provided by Actions
● You need events that are outside the set

provided by Actions

 Actions

● Your integration is essentially
“headless”, i.e. it does not require user
interaction, or uses GitHub.com for its
user interface

● Your integration does not need to
persist data in a database

● Your integration wraps an existing CLI,
or API

● You are comfortable with your action
code being publicly visible

● You would prefer GitHub to run your
integration

GitHub hosted runners

● “Just Works” solution for maximum
ease

● Linux, Windows, macOS
● Compatible with public, internal, and

private repos
● Ephemeral runner VMs in

predictable environment
● Integrated billing and security model
● GitHub provides machine

maintenance and upgrades

Self hosted runners

● Custom solution for maximum
control

● Linux, Windows, macOS supported,
container possible

● Recommended only for private
repos

● Can utilize custom hardware and
processor architectures (e.g. ARM)
and operate in your network

● You assume responsibility for
environment, security, billing, and
management

Comparison

https://docs.github.com/en/actions/reference/specifications-for-github-hosted-runners
https://docs.github.com/en/actions/reference/specifications-for-github-hosted-runners#supported-software
https://docs.github.com/en/actions/hosting-your-own-runners/about-self-hosted-runners#self-hosted-runner-security-with-public-repositories

Libraries and resources

● Developer Documentation
● GitHub REST and GraphQL APIs
● GitHub Apps
● GitHub Webhooks
● Octokit
● Probot
● Actions Documentation
● Example JavaScript action
● Example container action
● Actions toolkit
● GitHub Marketplace, filterable by Apps or

Actions

https://docs.github.com/en/developers
https://docs.github.com/v3/
https://docs.github.com/en/graphql
https://docs.github.com/en/developers/apps
https://docs.github.com/en/developers/webhooks-and-events/about-webhooks
https://developer.github.com/v3/libraries/
https://probot.github.io/
https://docs.github.com/en/actions
https://github.com/actions/javascript-action
https://github.com/actions/container-action
https://github.com/actions/toolkit
https://github.com/marketplace

🚀 Summary

GitHub Apps are more FLEXIBLE, and POWERFUL, but come with some overhead (mostly hosting
the app) 💪
GitHub Actions are SMALLER, more LIGHTWEIGHT, and probably will JUST WORK for most
integration needs ✨
GitHub APIs are available through either type of integration.

